Monatshefte für Chemie 103, 42-61 (1972) © by Springer-Verlag 1972

Orbitalexponenten von einfachen analytischen Wellenfunktionen der Atome bis zur Kernladungszahl 30

Von

W. Solar, F. Mark und O. Polansky*

Aus dem Max-Planck-Institut für Kohlenforschung, Abteilung Strahlenchemie, Mülheim-Ruhr, und dem Institut für Theoretische Chemie der Universität Wien

(Eingegangen am 23. März 1971)

Orbital Exponents of Simple Analytic Wave Functions for Atoms with Atomic Numbers up to 30

The orbital exponents of simple analytic atomic functions have been calculated by imposing the condition, that the expectation value of the one-electron energy with respect to an effective one-electron operator should be close to the expectation value with respect to the Hartree—Fock-operator. Of the investigated functions, orthogonalized Slater functions give the best agreement with experimental values for the one-electron and total energies as well as for the overlap with SCF-functions. These orthogonalized Slater functions are constructed as a linear combination of (n - l)-Slater type orbitals and each (nl) group contains only one variation parameter. These functions fulfill the virial theorem with respect to an effective one-electron potential, which is characterized by a single effective nuclear charge even when the orthogonalized Slater functions contain more than one term.

Die Orbitalexponenten von einfachen analytischen Atomfunktionen werden über die Bedingung errechnet, daß der Erwartungswert der Einelektronenenergie bezüglich eines effektiven Einelektronenoperators möglichst gleich wird dem Erwartungswert bezüglich des Hartree-Fock-Operators. Von den untersuchten Ansätzen geben orthogonalisierte Slater-Funktionen die beste Übereinstimmung mit experimentellen Werten für die Einelektronen- und Gesamtenergien sowie für die Überlappung mit SCF-Funktionen. Diese orthogonalisierten Slater-Funktionen sind als Linearkombination von (n-l)-Slater-Funktionen angesetzt und enthalten für jede (nl)-Gruppe nur einen einzigen Variationsparameter. Sie erfüllen das Virialtheorem bezüglich eines effektiven Einelektronenpoten-

^{*} Herrn Prof. Dr. Dr. h. c. H. Nowotny gewidmet.

W. Solar u. a.: Orbitalexponenten von Wellenfunktionen der Atome 43

tials, das auch für mehrgliedrige Funktionen durch eine einzige effektive Kernladung gekennzeichnet ist.

1. Einleitung

Verschiedene semiempirische MO-Verfahren, welche die Überlappung nicht vernachlässigen, wie z. B. die erweiterte Hückelmethode¹ und das Allvalenz-Elektronenverfahren von Kato und Mitarb.², erfordern zur Berechnung der Überlappungsmatrix explizite Einelektronenfunktionen. Obzwar für die Atome der L- und M-Schale sehr genaue analytische Hartree—Fock-Funktionen bekannt sind (siehe z. B. Clementi³, Watson⁴), werden sie in diesen Verfahren nur selten herangezogen, da sie infolge ihrer großen Anzahl von Termen die Berechnungen aufwendig gestalten. Meistens wird daher nur eine eingliedrige Exponentialfunktion verwendet, deren Orbitalexponent nach den von Slater⁵ empirisch gefundenen Regeln gewählt wird.

Die mit diesen Abschirmkonstanten ermittelten Erwartungswerte der Einelektronenenergie weichen jedoch im allgemeinen stark von den *Hartree—Fock*-Werten ab. Dies gilt ebenso für die Parametersätze, die verschiedentlich neu vorgeschlagen wurden⁶. Bei den semiempirischen Verfahren zieht man es daher vor, Einzentren-Energieintegrale des *Hamilton*-Operators nicht mit diesen Funktionen zu berechnen, sondern durch experimentelle Werte anzunähern, z. B. die Einelektronenenergien durch die negativen Ionisierungsenergien¹.

Schuster⁷ beschrieb ein Modell zur Bestimmung von analytischen Einelektronenfunktionen, welches mit Slater- und wasserstoffähnlichen Funktionen gute Ionisierungs- und Gesamtenergien für die Atome der L-Schale liefert. Allerdings sind die Funktionen für die errechneten Werte der Orbitalexponenten im Vergleich zu Hartree—Fock-Funktionen sehr diffus. Dieses Modell wird daher auf weitere Funktionstypen angewandt und verallgemeinert, sowie durch zusätzliche Annahmen verfeinert, um einen Satz von einfachen analytischen Funktionen zu erhalten, welcher es bei MO-Berechnungen gestattet, sowohl die Überlappungsintegrale als auch die Einelektronenenergien in konsistenter Weise zu berechnen.

2. Das Modell zur Bestimmung von einfachen analytischen Einelektronenfunktionen

Die Hartree—Fock-Funktionen⁸ sind unter allen Einelektronenfunktionen dadurch ausgezeichnet, daß sie für eine in Form einer Determinante angesetzte Gesamtwellenfunktion die bestmögliche Gesamtenergie geben. Sie sind Eigenfunktionen des Hartree—Fock-Operators \mathbf{H}_{HF} , der für das *i*-te Elektron eines Atoms der Kernladungszahl Z mit 2n Elektronen in abgeschlossenen Schalen folgende Gestalt besitzt*:

$$\mathbf{H}_{HF}(i) = \mathbf{h}(i) + \sum_{\mu}^{2n} [\mathbf{J}_{\mu}(i) - \mathbf{K}'_{\mu}(i)].$$
(1)

Die einzelnen Terme besitzen darin die übliche Bedeutung und durch den Strich wird angezeigt, daß die Integration über die Spinvariable noch auszuführen ist

$$\mathbf{h}(i) = -\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} = \mathbf{T}(i) - \frac{Z}{r_{i}}$$
$$\mathbf{J}_{\mu}(i) \chi_{\nu}(i) = \left\{ \int \chi_{\mu}^{*}(j) \chi_{\mu}(j) \frac{1}{r_{ij}} d\tau_{j} \right\} \chi_{\nu}(i)$$
(2)
$$\mathbf{K}_{\mu}^{*}(i) \chi_{\nu}(i) = \left\{ \int \chi_{\mu}^{*}(j) \chi_{\nu}(j) \frac{1}{r_{ij}} d\tau_{j}' \right\} \chi_{\mu}(i).$$

Die Hartree—Fock-Funktionen beschreiben die tatsächliche Elektronenverteilung in Atomen und Molekülen sehr gut⁹. Da der Hartree—Fock-Operator die (gemittelte) Wechselwirkung zwischen allen Elektronen enthält und somit von der räumlichen Verteilung aller Elektronen abhängt, lassen sich jedoch die χ im allgemeinen analytisch nur durch eine große Zahl von Basisfunktionen aufbauen oder müssen in numerischer Form tabelliert werden.

Nähert man nun in den Hartree-Fock-Gleichungen

$$\mathbf{H}_{HF}\chi_{\nu} = \varepsilon_{\nu}^{HF}\chi_{\nu} \qquad \qquad \nu = 1, \dots n \tag{3}$$

den Operator \mathbf{H}_{HF} , welcher von der gesamten Ladungsverteilung bestimmt wird, für jede einzelne Funktion χ_{ν} durch einen vereinfachten effektiven Einelektronenoperator \mathbf{H}_{eff}^{ν} an, so gelangt man von den χ_{ν} zu analytisch einfacher aufgebauten Funktionen φ_{ν}

$$\mathbf{H}_{\text{eff}}^{\nu} \, \varphi_{\nu} = \left\{ \mathbf{T} + \mathbf{V}_{\text{eff}}^{\nu} \right\} \varphi_{\nu} = \varepsilon_{\nu} \varphi_{\nu} \quad \nu = 1, \, \dots \, n. \tag{4}$$

Die Wahl von $\mathbf{H}_{\text{eff}}^{\nu}$ läßt sich nicht ohne Willkür treffen; in dem von Schuster⁷ entworfenen Modell wird der effektive Einelektronenoperator so festgelegt, daß die mit den Funktionen φ_{ν} berechneten Erwartungswerte der Einelektronenenergien bezüglich beider Operatoren möglichst

^{*} Es werden atomare Einheiten verwendet: $a_0 = 0.52917$ Å und E = 27,20995 eV. Im weiteren werden die auftretenden Größen nicht mehr als Funktion eines bestimmten Elektrons gekennzeichnet, wenn dies nicht aus Gründen der Klarheit erforderlich ist.

gleich werden. An Stelle des Variationsprinzips, welches die Funktionen χ_{ν} bestimmt, tritt somit für jedes einzelne φ_{ν} die Bedingung*

$$\Delta_{\nu}^{2} = \left\{ \langle \varphi_{\nu} | \mathbf{H}_{\text{eff}}^{\nu} | \varphi_{\nu} \rangle - \langle \varphi_{\nu} | \mathbf{H}_{HF}^{\varphi} | \varphi_{\nu} \rangle \right\}^{2} = \text{Minimum}; \quad \nu = 1, 2, \dots n.$$
(5)

Durch die Minimumsforderungen ist man in der Lage, unbekannte Parameter in den Einelektronenfunktionen zu bestimmen, indem man für einen gewählten Satz von φ_{ν} das Minimum eines jeden Fehlerquadrats Δ_{ν}^2 bezüglich aller Parameter aufsucht. Zu einfachen analytischen Einelektronenfunktionen gelangt man dadurch, daß für jedes φ_{ν} nur ein einziger Variationsparameter ζ_{ν} , etwa der Orbitalexponent, angesetzt wird.

Für jede Elektronenkonfiguration eines Atoms oder Ions mit n verschiedenen Einelektronenfunktionen lassen sich dann die n Bedingungen (5) genau zu $\Delta_{\nu} = 0$ erfüllen. Dies ist auch möglich, wenn nur m (m < n) Parameter benutzt werden und nur m dieser Bedingungen voneinander linear unabhängig sind. Dieser Fall tritt z. B. bei Verwendung eines einzigen Variationsparameters für die p_{x-} , p_{y-} und p_z -Funktion bei halboder ganz gefüllter p-Schale ein. Ist jedoch die Zahl der Parameter kleiner als die Zahl der linear unabhängigen Bedingungen, so erhält man mehr Bestimmungsgleichungen als unbekannte Parameter vorhanden sind, und es gilt $\Delta_{\nu}^2 > 0$. Bei Ansatz eines einzigen Variationsparameters für die komplexen p-Funktionen p_1 , p_0 , p_{-1} liegt z. B. dieser Fall vor.

Der effektive Einelektronenoperator $\mathbf{H}_{\text{eff}}^{\nu}$ kann im Rahmen der Bedingungen (5) verschieden gewählt werden. Zweckmäßigerweise setzt man ihn so an, daß die Gleichungen (4) in geschlossener Form lösbar sind. Bei dem von *Schuster*⁷ benutzten Abschirmmodell besitzt der Einelektronenoperator die Gestalt

$$\mathbf{H}_{\rm eff}^{\nu} = -\frac{1}{2} \nabla^2 - \frac{Z_{\rm eff}^{\nu}}{r}.$$
 (6)

Eigenfunktionen zum Operator (6) sind z. B. *Slater*-Funktionen (zur Beschreibung der Funktionen siehe Abschnitt 3.1) mit den Eigenwerten

$$\varepsilon_{\nu} = -\frac{\zeta_{\nu}}{n'} \left\{ \zeta_{\nu} [n'(n'-1) - l(l+1)] \frac{1}{2n'-1} - \frac{n'}{2} \zeta_{\nu} + Z_{\text{eff}}^{\nu} \right\}.$$
(7)

Wie aus dem Ausdruck (7) für den Eigenwert hervorgeht, muß für das Abschirmmodell zusätzlich eine Annahme über den funktionellen Zusammenhang zwischen der effektiven Kernladungszahl Z_{eff}^{ν} und dem Parameter ζ_{ν} getroffen werden.

Eine Sonderstellung unter den Einelektronenfunktionen nehmen diejenigen ein, welche das Virialtheorem in der Form

^{*} Der hochgestellte Index φ am Operator \mathbf{H}_{HF} deutet die Basis an.

W. Solar u.a.:

$$-2\langle \varphi_{\mathbf{v}} | \mathbf{T} | \varphi_{\mathbf{v}} \rangle = \langle \varphi_{\mathbf{v}} | \mathbf{V}_{\text{eff}}^{\mathbf{v}} | \varphi_{\mathbf{v}} \rangle \quad \mathbf{v} = 1, \dots n$$
(8)

erfüllen. Drückt man nämlich entsprechend dieser Beziehung in den Bedingungen (5) die Beiträge für die potentielle Energie durch die der kinetischen Energie aus, so hängen die Bedingungen für gegebene φ_{ν} nur mehr von den ζ_{ν} ab

$$\Delta_{\nu}^{2} = \left\{ - \langle \varphi_{\nu} | \mathbf{T} | \varphi_{\nu} \rangle - \langle \varphi_{\nu} | \mathbf{H}_{HF}^{\varphi} | \varphi_{\nu} \rangle \right\}^{2}.$$

Die errechneten Einelektronenfunktionen φ_{ν} (ζ_{ν}) sind daher die bestmöglichen im Sinne der Bedingungen (5) für alle diejenigen Einelektronenpotentiale $\mathbf{V}_{\text{eff}}^{\nu}$ für welche das Virialtheorem (8) gilt. Leitet man somit die φ_{ν} etwa mit dem Operator (6) unter den Nebenbedingungen (8) ab, so besitzen die errechneten Orbitalexponenten ζ_{ν} eine über den speziellen Ansatz für den effektiven Einelektronenoperator hinausgehende Gültigkeit. Dies bedeutet andererseits, daß es nicht möglich ist, für gegebene φ_{ν} durch Verwendung einer ausgefeilteren Näherung für das Einelektronenpotential Funktionen zu erhalten, die das Mehrelektronenpotential besser annähern.

Die Gesamtenergie des Systems ist in dem Modell nicht eindeutig gegeben, da sich über die Bedingungen (5) Einelektronenfunktionen gewinnen lasse, ohne daß die Form der Gesamtwellenfunktion festgelegt wird. Baut man aus den Funktionen φ_{ν} eine genäherte Gesamtwellenfunktion durch eine einzige *Slater*-Determinante

$$\Phi = \operatorname{Det} \left[\varphi_1 \, \overline{\varphi}_1 \, \dots \, \varphi_n \, \overline{\varphi}_n \right]$$

für die angenommene Elektronenkonfiguration auf, so erhält man die Gesamtenergie des Systems für den Fall, daß $\Delta_{\nu}^2 = 0$ und für den Operator (6) zu

$$E = \sum_{\nu}^{2n} \varepsilon_{\nu} - \frac{1}{2} \sum_{\nu}^{2n} \left\{ Z - Z_{\text{eff}}^{\nu} \right\} \left\langle \varphi_{\nu} \left| \frac{1}{r} \right| \varphi_{\nu} \right\rangle.$$
(9)

Die Gesamtenergie ist nicht gleich der Summe der Einelektronenenergien, da in dem Modell nicht der Gesamt-Hamilton-Operator durch eine Summe von effektiven Einelektronenoperatoren, sondern der Hartree—Fock-Operator durch effektive Einelektronenoperatoren ersetzt wird.

Eine andere Näherung für die Gesamtenergie läßt sich, ohne Kenntnis der Gesamtwellenfunktion, nach dem Koopmansschen Theorem¹⁰ durch Aufsummieren der Einelektronenenergien aufeinanderfolgender Ionisationsstufen gewinnen. Auf diese Weise kann man aber die Gesamtenergie ebenfalls nicht willkürfrei berechnen, da sich für einige Ionisationszustände mehrere Elektronenkonfigurationen anschreiben lassen, für welche sich verschiedene Orbitalenergien ergeben können. Die auf einem der beiden Wege bestimmte Gesamtenergie kann keinesfalls als Schranke für die wahre Energie des Systems dienen, wie dies für den nach dem Variationsverfahren errechneten Erwartungswert der Energie möglich ist.

3. Die untersuchten Funktionssätze

Die Auswahl der möglichen Funktionssätze ist dadurch eingeschränkt, daß durch die Bedingungen (5) nur ein Parameter ζ_{ν} für jede Funktion φ_{ν} bestimmt werden kann. Das Modell für den effektiven Einelektronenoperator (6) legte Eigenfunktionen vom Exponentialtyp nahe, insbesondere Slater-Funktionen^{5, 11} und wasserstoffähnliche Funktionen¹². Sie enthalten gerade einen variierbaren Parameter, den Orbitalexponenten. Die wasserstoffähnlichen Funktionen mit frei wählbarem ζ_ν kann man so abwandeln, daß Funktionen mit verschiedener Hauptquantenzahl aber gleicher Symmetrie orthogonal zueinander sind (orthogonalisierte wasserstoffähnliche Funktionen). Durch Linearkombination von Slater-Funktionen gelangt man zu Funktionen, die sowohl das Virialtheorem (8) als auch die Orthogonalitätsbedingungen erfüllen, aber nicht mehr Terme als die wasserstoffähnlichen Funktionen enthalten (orthogonalisierte Slater-Funktionen). Im folgenden werden die für das Modell bedeutsamen Kennzeichen der Funktionen beschrieben. Es sind jeweils nur die Radialanteile der Funktionen angeführt; für die Winkelanteile werden entweder komplexe oder reelle Kugelflächenfunktionen verwendet.

3.1. Slater-Funktionen

$$R_{n'l} = \frac{\{2\zeta\}^{n'+\frac{1}{2}}}{\{\Gamma(2n'+1)\}^{\frac{1}{2}}} r^{n'-1} e^{-\zeta r}.$$
 (10)

Nach Slater hängen effektive Kernladung und Orbitalexponent über

$$Z_{\rm eff}^{\nu} = n' \cdot \zeta_{\nu} \tag{11}$$

zusammen. Mit dieser Annahme ergeben sich die Eigenwerte des effektiven Einelektronenoperators (6) zu

$$\varepsilon_{\nu} = -\frac{1}{2} \zeta_{\nu}^{2} - \left\{ n' \left(n' - 1 \right) - l \left(l + 1 \right) \right\} \frac{\zeta_{\nu}^{2}}{\left(2n' - 1 \right)n'}.$$
 (12)

Die effektive Hauptquantenzahl n' für die 4s-Schale, die bei *Slater* einen nicht-ganzzahligen Wert annimmt, wurde in den Berechnungen gleich 4 gesetzt.

W. Solar u.a.:

3.2. Wasserstoffähnliche Funktionen

$$R_{nl} = \left\{ (2\zeta)^3 \frac{(n-l-1)!}{2n\left[(n+l)!\right]^3} \right\}^{\frac{1}{2}} e^{-\zeta r} (2\zeta r)^l \operatorname{L}_{n+l}^{2l+1}(2\zeta r)$$
(13)

 mit

$$\mathbf{L}_{n+l}^{2l+1}(2\zeta r) = \sum_{k=0}^{n-l-1} (-1)^{k+1} \frac{[(n+l)!]^2}{(n-l-1-k)!(2l+1+k)!k!} (2\zeta r)^k.$$

Die für das Abschirmmodell benötigte Beziehung zwischen der effektiven Kernladung und dem Orbitalexponenten wird analog (11) angenommen; die Eigenwerte des Einelektronenoperators (6) ergeben sich zu

$$\varepsilon_{\nu} = -\frac{1}{2} \zeta_{\nu}^2. \tag{14}$$

3.3. Orthogonalisierte wasserstoffähnliche Funktionen

Der Ansatz für diese Funktionen ist

$$R_{nl} = \sum_{k=0}^{n-l-1} c_k r^{k+l} e^{-\zeta r}.$$
 (15)

Dieser Typ entspricht formal den wasserstoffähnlichen Funktionen, die Koeffizienten c_0 bis c_{n-l-1} werden jedoch so bestimmt, daß die n-l-1-Orthogonalitätsbedingungen für die Radialanteile der Funktionen erfüllt sind; c_0 ergibt sich aus der Normierungsbedingung. Durch die Orthogonalisierung sind die Koeffizienten c_k nicht mehr allein durch die Quantenzahlen n und l festgelegt, sondern hängen noch von den Orbitalexponenten ζ_v der Funktionen gleicher Symmetrie ab. Die orthogonalisierten wasserstoffähnlichen Funktionen sind für alle l < n-1 nicht mehr Eigenfunktionen des Operators (6).

3.4. Orthogonalisierte Slater-Funktionen

Diese Funktionen werden aus der kleinstmöglichen Anzahl von Slater-Orbitalen, nämlich n - l, aufgebaut, die erforderlich sind, um sowohl das Virialtheorem (8) als auch die Orthogonalitätsbedingungen zu befriedigen

$$R_{nl} = \sum_{j=1}^{k-1} b_{nj} R_{jl} + b_{nk} r^{n-1} e^{-\zeta r}; \quad k = n-1 > 1.$$
 (16)

Nur der letzte Term dieses Ansatzes enthält einen neuen Variationsparameter ζ ; er bestimmt das äußerste Maximum, während der innere Verlauf der Funktion durch eine Linearkombination aller tieferliegenden Funktionen R_{jl} derselben Symmetrie beschrieben wird. Der Strich am Summenzeichen soll bedeuten, daß für n - l = 1 die Summe wegfällt. Die Koeffizienten b_{nj} der Linearkombination werden so festgelegt, daß die Orthogonalitätsbedingungen für den radialen Funktionsanteil erfüllt sind. Durch Ordnen nach Potenzen von r und Zusammenfassen der entsprechenden Koeffizienten erhält man die Funktionen in der Form

$$R_{nl} = \sum_{j=1}^{n-l} c_{nj} r^{j+l-1} e^{-\zeta_j r}$$
(17)

Sie besitzen dieselbe Gestalt wie die nach dem *Schmidt*schen Verfahren orthogonalisierten *Slater*-Funktionen, so daß für sie der gleiche Name beibehalten wird.

Sollen diese Funktionen das Virialtheorem bezüglich des effektiven Einelektronenoperators erfüllen, so muß die Bedingung

$$-2\left\langle \varphi_{\nu}\right| -\frac{1}{2}\nabla^{2}\left|\varphi_{\nu}\right\rangle = \left\langle \varphi_{\nu}\right| -\frac{Z_{\text{eff}}^{\nu}}{r}\left|\varphi_{\nu}\right\rangle \tag{18}$$

gelten. Durch Umformen erhält man daraus den expliziten Ausdruck für Z_{eff}^{ν} als Funktion aller Parameter

$$Z_{\rm eff}^{\nu} = -\frac{\langle \varphi_{\nu} | \nabla^2 | \varphi_{\nu} \rangle}{\left\langle \varphi_{\nu} \left| \frac{1}{r} \right| \varphi_{\nu} \right\rangle}.$$
 (18a)

Auch bei den mehrgliedrigen Funktionen mit n - l > 1 ist demnach das Einelektronenpotential $\mathbf{V}_{\text{eff}}^{\mathbf{v}}$ durch eine einzige effektive Kernladungszahl darstellbar; allerdings besteht zwischen $Z_{\text{eff}}^{\mathbf{v}}$ und den Orbitalexponenten $\zeta_{\mathbf{v}}$ nicht mehr eine so einfache Beziehung wie (11). Trotz der zusätzlichen Einschränkung, welche die Forderung (18a) für die Variation der Parameter bedeutet, können die Funktionen bessere Energien als bei einer nicht beschränkten Wahl der Parameter liefern, da sie nicht über das Variationsprinzip gewonnen werden.

Die Erwartungswerte des Operators (6) ergeben sich zu

$$\varepsilon_{\nu} = \frac{1}{2} \langle \varphi_{\nu} | \nabla^2 | \varphi_{\nu} \rangle. \tag{19}$$

Durch die Beziehung (18a) ist die Möglichkeit gegeben, allgemein für orthogonalisierte *Slater*-Funktionen ein effektives Einelektronenpotential zu definieren, das durch eine einzige effektive Kernladungszahl gekennzeichnet ist. Hierzu ist nur die physikalisch sinnvolle Annahme getroffen, daß die Funktionen das Virialtheorem (8) erfüllen. Über (19) sind dann Erwartungswerte der Einelektronenenergie für orthogonalisierte *Slater*-Funktionen zugänglich*.

^{*} Veröffentlichung in Vorbereitung.

Monatshefte für Chemie, Bd. 103/1

W. Solar u.a.:

4. Berechnung der Parameter

Die Minimumsbedingungen (5), welche die Parameter ζ_{ν} bestimmen, sind gleichbedeutend mit der Forderung, daß die Summe der Fehlerquadrate minimal werde

$$F = \sum_{\nu}^{n} \left\{ \Delta_{\nu} \left(\zeta_{1}, \zeta_{2}, \dots, \zeta_{m} \right) \right\}^{2} = \text{Minimum}, \quad (20)$$

da alle Bedingungen gleichzeitig erfüllt sein müssen; sie lassen sich durch das Gleichungssystem

$$\frac{\partial F}{\partial \zeta_j} = 0 \qquad j = 1, 2, \dots m; \, m \leqslant n \tag{21}$$

ausdrücken.

Da die einzelnen Gleichungen in nichtlinearer Weise von den Parametern abhängen, gelingt die Lösung nur mit Hilfe eines iterativen Verfahrens. Hierzu wurde die *Gauß*sche Methode der kleinsten Fehlerquadrate herangezogen, welche es gestattet, sowohl die Fälle F = 0als auch F > 0 gemeinsam zu behandeln. Zunächst ist es zweckmäßig, (5) zu vereinfachen. Da sich nach Einsetzen der entsprechenden Operatoren die Beiträge für die kinetische Energie wegkürzen, kann Δ_{ν} in die Form

$$\Delta_{\nu} = f_{\nu}(\xi) - Z \qquad \nu = 1, 2, \dots n \tag{22}$$

übergeführt werden. Hierin bedeutet

$$f_{\nu}(\xi) = Z_{eff}^{\nu} + \frac{\left\langle \varphi_{\nu} \middle| \sum_{\mu}^{2n} \left\{ \mathbf{J}_{\mu}(i) - \mathbf{K}_{\mu}(i) \right\} \middle| \varphi_{\nu} \right\rangle}{\left\langle \varphi_{\nu} \middle| \frac{1}{r} \middle| \varphi_{\nu} \right\rangle}$$
(23)

und mit ξ wird die Gesamtheit der *m* unbekannten Parameter abgekürzt. Die einzelnen Funktionen f_v (ξ) lassen sich in eine *Taylor*-Reihe um den Punkt $\xi = \xi^0$ entwickeln

$$f_{\nu}(\xi) = f_{\nu}(\xi^{0}) + \sum_{j=1}^{m} \left[\frac{\partial f_{\nu}(\xi)}{\partial \zeta_{j}} \right]_{\xi = \xi^{0}} \delta\zeta_{j} + \dots$$
$$\delta\zeta_{j} = \zeta_{j} - \zeta_{j}^{0}$$

wobei die Reihe nach den linearen Gliedern abgebrochen werden kann, sofern die Startwerte ξ^0 genügend nahe den Minimalwerten liegen. Nach Einsetzen der Entwicklung in (22) ergibt sich für die Summe der Fehlerquadrate

$$F = \sum_{\mathbf{v}}^{n} \Delta \mathbf{v}^{2} = \sum_{\mathbf{v}}^{n} \left\{ \mathbf{f}_{\mathbf{v}} \left(\boldsymbol{\xi}^{0} \right) - Z + \sum_{j}^{m} \left[\frac{\partial \mathbf{f}_{\mathbf{v}}}{\partial \zeta_{j}} \right]_{\boldsymbol{\xi} = \boldsymbol{\xi}^{0}} \delta \zeta_{j} \right\}^{2}.$$

An der Stelle des Minimums müssen alle partiellen Ableitungen von Fnach den Verbesserungen $\delta \zeta_j$ verschwinden, womit man ein System von m linearen Gleichungen mit m Unbekannten erhält

Durch Lösen des Gleichungssystems (24) gewinnt man einen neuen Satz von Parametern nach

$$\xi^{q+1} = \xi^q + \delta\xi^q,$$

wobei die Rechnung solange fortgeführt wird, bis die Absolutwerte der relativen Verbesserungen eine vorgegebene Schranke unterschreiten. Da die einzelnen Bedingungen (5) über die Austausch- und *Coulomb*-Terme nur schwach miteinander gekoppelt sind und da das *Gauß*sche Verfahren quadratisch konvergiert, sind im allgemeinen nur wenige Iterationen erforderlich.

Eine Berechnung der partiellen Ableitungen nach den Parametern über explizite analytische Ausdrücke ist nicht zweckmäßig. Sie lassen sich leicht numerisch über

$$\left[\frac{\partial f_{\nu}(\xi)}{\partial f_{j}}\right]_{\xi=\xi^{\circ}} \approx \frac{f_{\nu}(\zeta_{j}^{\circ}+h)-f_{\nu}(\zeta_{j}^{\circ}-h)}{2h}+0 (h^{3})$$
(25)

gewinnen, wobei die Schrittweite h so zu wählen ist, daß einerseits das Restglied vernachlässigbar bleibt, andererseits durch die Differenzbildung nicht zu viele signifikante Stellen weggelöscht werden.

5. Rechenergebnisse

Für Slater- und wasserstoffähnliche Funktionen konnten die von Schuster⁷ nach einem anderen Rechenverfahren ermittelten Abschirmkonstanten für die Atome der L-Schale innerhalb der Rechengenauigkeit bestätigt werden. Die Berechnungen wurden auf die Elemente der 3. Periode, der ersten Übergangsmetallreihe und auf K und Ca ausgedehnt; sie wurden mit Hartree-Operatoren

$$\mathbf{H}_{\nu}(i) = \mathbf{h}(i) + \sum_{\mu \neq \nu} \mathbf{J}_{\mu}(i)$$
(26)

und mit Hartree—Fock-Operatoren jeweils für Funktionen mit komplexem und reellem Winkelanteil durchgeführt. Für alle Atome wurde eine statistische Verteilung der Spins angenommen, so daß der Hartree— Fock-Operator stets in der Form

$$\mathbf{H}_{HF}(i) = \mathbf{h}(i) + \sum_{\mu} \left\{ \mathbf{J}_{\mu}(i) - \frac{1}{2} \mathbf{K}_{\mu}(i) \right\}$$
(27)

angesetzt ist*. Die Bestimmung der orthogonalisierten wasserstoffähnlichen Funktionen beschränkte sich auf die Atome der 2. und der 3. Periode. Die orthogonalisierten *Slater*-Funktionen wurden für alle Atome bis zu Z = 30 ermittelt. Bei allen vier Funktionstypen umfaßten die Berechnungen für die meisten Atome alle Ionisationsstufen.

Als Startwerte für die Iteration der Parameter dienten die nach den Slater-Regeln ermittelten Größen. Da für die meisten Anionen die Rechnungen mit diesen Werten divergierten, mußten hierfür andere Startwerte abgeschätzt werden. Nach 3 bis 14, im allgemeinen etwa 4 Iterationen änderten sich die ersten 5 Ziffern der Orbitalexponenten nicht mehr.

Die Unterschiede zwischen Funktionen mit komplexem und mit reellem Winkelanteil** sind gering und betragen weniger als 3% in den Orbitalexponenten, so daß die folgenden Aussagen für beide Ansätze gelten, in den Tabellen aber nur Zahlenwerte für die reellen Funktionen angeführt werden.

Für die orthogonalisierten *Slater*-Funktionen mit reellem Winkelanteil sind im Anhang die Orbitalexponenten, die Linearkombinationskoeffizienten und die effektiven Kernladungen des Potentialansatzes (6) von einigen Atomen der 2. und 3. Periode im Grundzustand und in verschiedenen Valenzzuständen aufgenommen***.

6. Diskussion

Um die Brauchbarkeit des Modells und die Güte der 4 verschiedenen Funktionssätze zu überprüfen, sollen die Einelektronenenergien, die Gesamtenergien und die Überlappung mit den SCF-Funktionen herangezogen werden. Hierbei ist zu beachten, daß die Funktionen zwar für

^{*} Dies bedeutet keine Einschränkung für Valenzzustände, für welche in semiempirischen *MO*-Verfahren brauchbare Einelektronenfunktionen von besonderem Interesse sind.

^{**} Die verschiedenen Ergebnisse für Funktionen mit komplexem bzw. reellem Winkelanteil folgen aus den der Gl. (5) zugrunde liegenden Annahmen des Modells; siehe auch ⁷.

^{***} Weitere Zahlenwerte finden sich in der Dissertation W. Solar, Universität Wien 1970.

Aton	te Konfiguration	**Ţ	**II	**111	۲V***	SOF^{\dagger}	Slater- Regel	exp.††
Li	(K)(2s)	5,734	4,744	4,427	5,412	5,432	5,7412	5,39
Be	$(K)(2s)^2$	9,253	8,386	6,919	8,810	8,414	12,9247	9,32
ф	$(K)(2s)^2(2p)$	8,175	7,315	12,216	8,107	8,433	22,8563	8,296
C	$(K)(2s)^2(2px)(2py)$	12,372	10,372	18, 321	11,629	11,772	35,9170	11,264
z	$(K)(2s)^2 (2px)(2py)(2pz)$	17,938	14,039	25,334	15,918	15,387	51,6988	14,54
0	$(K)(2s)^2 (2px)^2 (2py)(2pz)$	17,065	11,911	28,937	15,039	17,106	70,4736	13,614
Fer	$(K)(2s)^2(2px)^2(2py)^2(2py)^2)$	28,356	18,656	38,052	22,258	19,710	91,9694	17,42
å	(K)(L)	41,032	26,044	42,52	30,104	22,911	116,4583	21,559
N_{a}	(K)(L)(3s)	2,731	8,720	2,186	6,010	4,929	7,0745	5.138
Mg	$(K)(L)(3s)^2$	4,099	11,637	3,18	7,955	6.864	12.2444	7.644
Al	$(K)(L)(3s)^2(3p)$	4,892	3,299	5,12	5,873	5,700	18,5027	5,984
<u>.</u> .	$(K)(L)(3s)^2(3px)(3py)$	8,194	5,662	7,838	8,562	8,051	25,8494	8,149
بم	$(K)(L)(3s)^2(3px)(3py)(3py)(3pz)$	13,381	8,528	11,261	11,667	10,628	34,8286	11,0
Ø	$(K)(L)(3s)^2(3px)^2(3py)(3pz)$	11,376	10,109	12,242	12,52	11,878	44,8963	10.357
5	$(K)(L)(3s)^2(3px)^2(3py)^2(3py)^2(3pz)$	10,587	14,157	15,944	16,656	13,603	56,0523	13.01
\mathbf{Ar}	$(K)(L)(3s)^2(3p)^6$	14,927	18,706	.	21,161	15,891	68.8410	15,755
К	$(K)(L)(3s)^2(3p)^6(4s)$	1,585	11,125		4,571	3.98		4.339
Ca,	$(K)(L)(3s)^2(3p)^{6}(4s)^2$	2,264	13,413		5,915	5,306		6,111
*	Eingetragen sind die negative	an Werte.						
* *	Mit Hartree-Operator.							
* * *	Mit Hartree-Fock-Operator.							
*	Entnommen ^{3 b} .							
11	Entnommen ¹⁴ .							
щ '	Slater-Funktion II Wassers	toffähnliche J	Funktion. —	III Orthogor	alisierte wass	erstoffähnlich	ie Funktion. —	IV Ortho-
o'ona.]	isierte <i>Slater</i> Funktion							

Tabelle 1. Energien des obersten besetzten Orbitals, in eV*

Orbitalexponenten von Wellenfunktionen der Atome

53

gonalisierte Slater-Funktion.

Atom *	Nach <i>Koopma</i> Theo	dem nsschen rem	Nach Gl. (9)		
	II **	IV ***	IV ***	SCF^{\dagger}	exp.††
Li	69,241	68,561	58,592	69,241	54,75
Be	134,734	133,241	115,512	134,734	111,0
В	238,491	220,930	190,599	238,491	
С	$336,\!448$	331,269	283,799	336,448	283,84
N	471,763	464, 186	395,019	471,763	400,0
0	630,658	421,458	526,076	630,658	531.7
\mathbf{F}	813,445	801,395	674,353	813, 445	
Ne	1019,439	1003,882	840,256	1019,439	866,889
Na	1272,045	1222,737	1044,762	1272,045	1071,67
${ m Mg}$	1478,651	1465,835	1274,408	1478,651	1303,39
\widetilde{Al}	1744,644	1733,228	1532,306	$1744,\!644$	1559,878
\mathbf{Si}	2036,883	2026,037	1812,560	2036,883	1840,0
Р	2354,867	2344,590	2115,343	2354,867	2143,5
\mathbf{S}	2698,283	2687,404	2442,098	2698,283	2470, 48
Cl	3067, 115	3057, 115	2791,162	3067,115	2819,60
\mathbf{Ar}	3461,227	3451,111	3162,796	3461,227	3202,9
\mathbf{K}	3879,522	3869,351	3561,876	3879,522	3607,8
\mathbf{Ca}	4322,723	4313,029	3987,805	4322,723	4038,1

Tabelle 2. K-Röntgenabsorptionskanten in eV

* Konfigurationen wie in Tab. 1.

** Mit Hartree-Operator.

*** Mit Hartree-Fock-Operator.

† Berechnet mit den Funktionen ³ b.

†† J. A. Bearden, X-Ray Wavelengths, NYO-10586 (1964), 548 p.

II Wasserstoffähnliche Funktion. - IV Orthogonalisierte Slater-Funktion

bestimmte Elektronenkonfigurationen, nicht aber für spektroskopische Zustände errechnet sind.

Die besten Ergebnisse liefern die dem Virialtheorem genügenden orthogonalisierten Slater-Funktionen; es folgen die wasserstoffähnlichen und die orthogonalisierten wasserstoffähnlichen Funktionen, während die Slater-Funktionen die schlechtesten Werte geben; für die Atome der 3. Periode sind nur die Ergebnisse für die orthogonalisierten Slater-Funktionen befriedigend. Die Reihenfolge gilt sowohl bei Verwendung eines Hartree- als auch eines Hartree—Fock-Operators. Vergleicht man bei den einzelnen Funktionen die Ergebnisse für die beiden Operatoren, so ergibt sich für die orthogonalisierten Slater-Funktionen die beste Übereinstimmung bei Benutzung des Hartree—Fock-Operators, für die anderen Funktionen dagegen bei Anpassung des effektiven Einelektronenoperators an den Hartree-Operator.

Auf Grund der Herleitung der Funktionen ist verständlich, daß die Einelektronenenergien gut wiedergegeben werden. In Tab. 1 sind diese

Atom **	· Nach Gle	pichung (9)	Nach de	m Koop-	SC F ++	evo tti
	II ***	IV†	II ***	IV†	5011	exp. III
Li	196,205	196,609	203,89	202,70	202,17	203,459
Be	385,238	386,785	398,03	399,68	396,50	399,064
в	645,376	650, 505	667, 325	670,76	667, 22	670,801
\mathbf{C}	981,201	995,059	1023, 46	1030,38	1025, 13	1029,764
\mathbf{N}	1406,555	1427,080	1475,74	1487,96	1480, 16	1485, 48
0	1919,264	1949,690	2027, 45	2047,79	2034,82	2042,907
\mathbf{F}	2524,877	2570,812	2697,885	2727,56	2703,925	2714,392
Ne	3230,690	3297,559	3497,579	3534,57	3497,757	
\mathbf{Na}	4089,407	4163,995	4397,989	4445,71	4404,164	
Mg	5070,786	5151, 317	5423,011	5478,09	5431,494	5447,044
Al	6180,021	6264,025	6562,844	6632, 11	$6581,\!439$	6599,654
$\mathbf{S}i$	7402,423	7498,682	7829, 42	7915, 16	7859,696	
Ρ	8750, 187	8859,025	9230,571	9332,31	9270,922	
\mathbf{S}	10225, 149	10349,062	10764,606	10884, 89	10816,064	
Cl	11829,648	11970,8601	12442,583	12581, 17	12502, 458	
\mathbf{Ar}	13567,278	13728, 328	14267, 392	14425, 25	14334,649	

Tabelle 3. Gesamtenergien in eV*

* Eingetragen sind die negativen Werte.

** Konfigurationen wie in Tab. 1.

*** Mit Hartree-Operator.

 \dagger Mit Hartree—Fock-Operator.

tt Entnommen ^{3 b}.

^{†††} Durch Aufsummieren der einzelnen Ionisierungsenergien ¹⁴.

II Wasserstoffähnliche Funktion. --- IV Orthogonalisierte Slater-Funktion.

für die höchsten Orbitale einiger Atome zusammengefaßt. Die Übereinstimmung mit den experimentellen Werten ist von den s-Elektronen nach den p- und d-Elektronen abgestuft; für die p-Elektronen nimmt der Fehler von links nach rechts im Periodensystem zu. Bei den Übergangselementen ergibt sich für die s- und d-Schale die falsche energetische Reihenfolge. Für Konfigurationen, bei denen Elektronen aus den tieferliegenden s- oder p-Schalen in die d-Schale übergeführt worden sind. erhält man dagegen gute Einelektronenenergien für die d-Elektronen. Es ist jedoch bekannt¹³, daß sich *d*-Funktionen allgemein schlecht durch eine einzige Exponentialfunktion darstellen lassen. Die errechneten Ionisierungsenergien werden für ein gegebenes Atom für die tieferliegenden Elektronen zunehmend schlechter. Ermittelt man dagegen die Ionisierungsenergien nicht nach dem Koopmansschen Theorem, sondern aus der Differenz der Gesamtenergie von Atom und Ion nach (9), so findet man für die 1s-Elektronen eine ausgezeichnete Wiedergabe der K-Röntgenabsorptionskanten (Tab. 2), während für die höherliegenden Elektronen die relativen Abweichungen immer größer werden. Über

Atom*	Funktion	I **	II **	III **	IV ***	Slater-Regel
Li	(2s)	0,950	0,868	0,984	0,993	0,982
Be	(2s)	0,902	0,808	0,954	0,974	0,978
В	(2p)	0,917	0,894	0,978	0,915	0,987
С	(2p)	0,899	0,859	0,966	0,886	0,990
Ν	(2p)	0,895	0,837	0,956	0,868	0,991
0	(2p)	0,924	0,899	0,961	0,907	0,987
\mathbf{F}	(2p)	0,939	0,917		0,918	0,986
\mathbf{Ne}	(2p)	0,909	0,804		0,841	0,985
\mathbf{Na}	(3s)	0,511	0,588	0,799	0,991	0,979
Mg	(3s)	0,480	0,473	0,679	0,959	0,974
Aľ	(3p)	0,642	0,006	0,233	0,906	0,969
\mathbf{Si}	(3p)	0.668	0.058		0,880	0,973
Ρ	(3p)	0.726	0,104		0,867	0,971
\mathbf{S}	(3p)	0.785	0.204		0,880	0.967
\mathbf{U}	(3p)	0.875	0,245		0,878	0,965
\mathbf{Ar}	(3p)	0,519	0,170		0.845	0,963
\mathbf{K}	(4s)	0.217	0.441		0,951	0.856†
Ca	(4s)	0.213	0.302		0.898	0.890†
Ti	(4s)		0.458		0.958	0.888†
v	(4s)	_	0,491		0,965	0.892†

Tabelle 4. Überlappungsintegrale mit den SCF-Funktionen^{3b}

* Konfiguration wie in Tab. 1.

** Mit Hartree-Operator.

*** Mit Hartree-Fock-Operator.

† Errechnet mit $n'_{4s} = 4$.

I Slater-Funktion. — II Wasserstoffähnliche Funktion. — III Orthogonalisierte wasserstoffähnliche Funktion. — IV Orthogonalisierte Slater-Funktion.

diesen Weg werden auch Elektronenaffinitäten zugänglich, die zumindest das richtige Vorzeichen aufweisen.

Die Gesamtenergie stimmt sehr gut für wasserstoffähnliche und orthogonalisierte *Slater*-Funktionen mit dem Experiment überein, wenn sie nach dem *Koopmans*schen Theorem durch Aufsummieren errechnet wird (Tab. 3). Der Fehler ist meist nicht größer als bei *SCF*-Funktionen. Die unter Annahme einer einzigen *Slater*-Determinante erhaltene Energie (9) liegt dagegen etwa 6-2% über den *SCF*-Werten, wobei der Fehler mit steigender Kernladung abnimmt.

Die Überlappung mit den SCF-Funktionen (Tab. 4) beträgt bei den orthogonalisierten *Slater*-Funktionen 0,99 bis 0,91 für *s*-Elektronen und sinkt für die *p*-Schale auf etwa 0,85, für *d*-Elektronen noch tiefer. Sie ist für wasserstoffähnliche und *Slater*-Funktionen schlechter. Aus den Werten der mittleren Radien (Tab. 5) ist ersichtlich, daß die Funktionen, insbesondere die *Slater*- und wasserstoffähnlichen, zu diffus sind und sich

Atom*	Funktion	I **	П**	III **	IV ***	SCF^{\dagger}	Slater- Regel
Li	(2s)	4,97	5,08	6,86	4,24	3,87	3,85
\mathbf{Be}	(2s)	3,91	3,82	4,75	3,23	2,65	2,56
В	(2p)	3,23	3,41	2,64	3,24	2,19	1,92
\mathbf{C}	(2p)	2,62	2,86	2,15	2,70	1,71	1,54
Ν	(2p)	2,18	2,46	1,83	2,311	1,40	1,28
0	(2p)	1,77	1,89	1,57	1,85	1,22	1,10
\mathbf{F}	(2p)	1,73	1,58		1,58	1,08	0,96
\mathbf{Ne}	(2p)	1,44	1,81		1,68	0,96	0,85
\mathbf{Na}	(3s)	10,48	5,62	16,02	4,47	4,21	4,77
Mg	(3s)	8,56	4,87	9,48	3,96	3,26	3,68
AŬ	(3p)	7,23	8,46		4,70	3,42	3,00
Si	(3p)	5,58	6,46		3,95	2,74	2,53
Р	(3p)	4,37	5,26		3,42	2,32	2,19
\mathbf{S}	(3p)	3,58	4,83		3,22	2,06	1,93
Q	(3p)	2,70	4,08		2,83	1,83	1,72
K	(4s)	17,97	6,64		6,07	5,20	7,63 **
\mathbf{Ca}	(4s)	15,03	6,04		5, 47	4,22	5,84 **
Ti	(4s)		4,72		4,10	3,80	5,2911
\mathbf{V}	(4s)		4.37		3.76	3.64	5 04 11

Tabelle 5. Mittlere Radien in atomaren Einheiten

* Konfigurationen wie in Tab. 1.

** Mit Hartree-Operator.

*** Mit Hartree-Fock-Operator.

† Errechnet aus den Angaben in ³ b.

†† Errechnet mit $n'_{4s} = 4$.

I Slater-Funktion. — II Wasserstoffähnliche Funktion. — III Orthogonalisierte wasserstoffähnliche Funktion. — IV Orthogonalisierte Slater-Funktion.

stärker im Raum ausbreiten als etwa die nach anderen Modellen abgeleiteten Funktionen vom *Slater*-Typ^{5, 6}. Die mittleren Radien der 3s- und 4s-Orbitale dagegen werden durch die orthogonalisierten *Slater*-Funktionen besser als durch die empirischen *Slater*-Funktionen wiedergegeben.

Eine Vergleichsmöglichkeit, welche Überlappung mit Funktionen derselben Parameterzahl überhaupt erreichbar ist, bieten die von *Richardson* und Mitarb.¹³ angegebenen Funktionen: paßt man die Orbitalexponenten von *Slater*-Funktionen, die nach dem *Schmidtschen* Verfahren zueinander orthogonalisiert wurden, derart an *SCF*-Funktionen an, daß die Überlappung mit diesen möglichst groß wird, so läßt sich bei den Übergangsmetallen ein Wert S = 0.99 für die orthogonalisierten 4s-Funktionen erzielen. Für die orthogonalisierten *Slater*-Funktionen, welche denselben Ansatz besitzen, deren Orbitalexponenten aber so gewählt sind, daß sie die Einelektronenenergien möglichst gut

		und Ion	isierung	spotential	e für ort	hogona	lisierte	Slater - F_1	unktione	ne	>	
Atom	Konfig.	ζ_{1s}	ζ_{2s}	C2, 1	C2,2	$Z_{ m 2s}^{ m eff}$	$I_{2\mathrm{s}}$	ζ_{2p}	I_{2p}	ζ_{2p}^{\prime}	I'_{2p}	I _{exp.}
Li	K(2s)	2,2449	0,6012	-1,3665	0,3302	1,215	5,41		1	1		5.39
Ľ:	K(2p)	2,2636	1	I		1]	0.5088	3,52	ļ	[3.54
\mathbf{Be}	$K(2s)^2$	3,1295	0,7878	-2,0198	0,6466	1,526	8,81		.	[]	9.32
ф	$K(2s)^{2}(2p)$	4,0298	1,0340	-3,0514	1,2774	2,030	15,43	0,7719	8,11	!	[8.30
Ö	$K(2s)^{2}(2p)^{2}$	4,9345	1,2883	-4,2616	2,2160	2,560	24, 32	0.9245	11,63	1		11.26
υ	$K(2s) (2p)^3$	4,9530	1,3508	-4,6204	2,5019	2,763	27,74	0,9618	12,59	ł	l	11.61
z	$K(2s)^{2}(2p)^{3}$	5,8412	1,5461	5,6204	3,4994	3,101	35,44	1,0817	15,92	ļ	1	14.54
0	$K(2s)^{2}(2p)^{4}$	6,7586	1,8275	-7,2574	5, 3233	3,717	50,41	1,0514	15,04 1	1.3511	24.84	13.61
۶.	$K(2s)^{2}(2p)^{5}$	7,6749	2,1004	8,9655	7,5451	4,306	67,27	1.2791	22,26	1.5819	34.05	17.42
$\mathbf{N}_{\mathbf{e}}$	$K(2s)^{2}(2p)^{6}$	8,5900	2,3698	-10,7630	10,2080	4,883	86,20	1,4875	30,10			21,56
Atom	Konfig.	ζ_{1s}	ζ_{2s}	c2,1	C2,2	$Z_{2{ m s}}^{ m eff}$	ζ_{2p}	ζ_{3s}	c3,1	Ū	3,2	c3,3
$\mathbf{N}_{\mathbf{a}}$	KL(3s)	9,4802	2,6471	-12,738	13,474	5,496	1,8940	0,7938	2, 2285	র্ 	5017	0.1911
M_{g}	$KL(3s)^2$	10,3800	2,9465	-15,009	17,636	6,180	2,3072	0,8985	2,7200	໌ ຕ ົ 	4003	0.2953
M_{g}	KL(3s) (3p)	10,3760	2,9513	-15,051	17,711	6,198	2,3396	0,9702	3,1879	4	0122	0.3889
Al	$KL(3s)^{2}(3p)$	11,2870	3,2643	-17,564	22,819	6,924	2,7409	1,0711	3,7044	1 2	1546	0,5497
AI	$KL(3s)$ $(3p)^2$	11,2850	3,2708	-17,624	22,936	6,946	2,7688	1,1319	4,1381	وُ	7935	0,6709
S.	$KL(3s)^{2}(3p)^{2}$	12,2040	3,5903	-20,324	28,993	7,692	3,1638	1,2311	4,6839	- 1	1932	0,8994
S.	$KL(3s)$ $(3p)^{3}$	12,2030	3,5973	20,391	29,139	7,716	3,1884	1,2858	5,1053	- 1,	8792	1,0527
ы.	$KL(3s)^{2}(3p)^{3}$	13, 1280	3,9203	-23,252	36, 172	8,471	3,5796	1,3842	5,6775	6	5467	1,3606
so i	$KL(3s)^{2}(3p)^{4}$	14,0570	4,2563	26,366	44,486	9,269	3,9998	1,5428	6,7768	- 12,	4060	1,9966
5 ·	$KL(3s)^2(3p)^5$	14,9900	4,5929	29,614	53,875	10,067	4,4141	1,6950	7,8791	-15,	6000	2,7829
\mathbf{Ar}	$KL(3s)^{2}(3p)^{6}$	15,9270	4,9299	- 32,986	64, 376	10,865	4,8245	1,8432	8,9978	-10,	1580	3,7402

Tabelle 6. Orbitalexponenten, Linearkombinationskoeffizienten, effektive Kernladungen

W. Solar u.a.:

exp.	5,14 7,64 3,41 5,99 3,90 5,00 5,76 7,76	en	163 831 172 172 087 133	l_{4s}	4,57 5,92 5,92 4,23 1,31 0,31 2,90
I,		c3,	$\begin{array}{c} 5,3 \\ 7,3 \\ 113,7 \\ 117,8 \\ 22,5 \\ 27,9 \end{array}$	· -	
I'_{3p}	5,96		198 197 177 177 177 177 177 177 177 177 177	$Z_{4\mathrm{s}}^{\mathrm{eff}}$	1,72 3,47 4,50 4,50 4,50
2	55 4 2	$c_{3,2}$	-24,1 -30,0 -45,2 -53,2 -63,2 -73,2	4,4	327 524 075 075 078 121 332
$Z^{(el)}_{3f}$	3,276		90489	°.	0,00,00,0 0,5,00,0 1,5,4,0
3,2	8038 2185	$c_{3,1}$	0,587 2,306 6,306 0,325 2,343 2,343	8	2589, 8099 , 8099 , 5904 , 1717 , 1717 , 6221
0	0,8		2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c_4	114010
3,1	,6848 ,9316	ζ_{3s}	2,034 2,231 2,654 2,856 3,050 3,241	57	573 528 535 583 583
		0	11 661 881 81 81 80 80 80	c4,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3p	474 	ζ ₂₁	5,24 5,66 6,98 6,98 7,42 7,86	Ŧ	828 297 293 371 292 892
<i>.</i>		eff 2s	577 607 113 883 883 883 883 883 883 883 883 883	c_4	
3p	1,28 2,55 2,55 2,55 2,52 2,52 2,52 1,66 1,16 1,16 1,16	N	11,6 $12,5$ $14,2$ $15,0$ $15,0$ $15,0$ $16,8$,	22522
	1 1 1 1 0	¢j	183 136 136 136 136 136 130 597	ζ4	0,75,0,75,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1
$Z_{ m 3p}^{ m efi}$	$\begin{array}{c} 1,440\\ 1,687\\ 1,687\\ 1,801\\ 2,059\\ 2,155\\ 2,453\\ 2,463\\ 2,463\\ 2,463\\ 3,262\\ 3,$	c_2	76,1 89,4 120,6 138,6 158,5 179,5	đ	- 839 003 357
	でき ち ち ち む む む む む		27 39 39 39 39	ນັ	0000 1 40100
c 3,2	$0,090 \\ 0,157 \\ 0,182 \\ 0,182 \\ 0,291 \\ 0,283 \\ 0,593 \\ 0,935 \\ 1,379 \\ 1,37$	$c_{2,1}$	36,52 440,23 52,44 61,33 61,33	Zeff 3p	,136 ,004 ,911 ,763 ,552 ,316
	あするののの は				6 9 4 4 1 9 6 9 7 9 7 8 7 9 0 1 8 7 9 0 1 8 7
c3,1	1,446 1,446 2,1472 3,301 3,528 3,528 3,528 9,941 9,941	ζ_{2s}	7713 1182 273 873 873 486 112	C3,2	2,521 0,132 0,132 9,181 5,032
			5,0 6,3 9,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7		0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ъ	$\begin{array}{c} 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 22$	1s	640 050 947 447 975 524	33,1	14,80 20,63 36,70 46,00 56,03 67,01
సి	1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	2	$\begin{array}{c} 16,8\\ 17,8\\ 19,6\\ 20,6\\ 21,5\\ 22,5\end{array}$		
33	$\begin{array}{c} 0.01\\ 0.01\\ 0.02\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\ 0.02\\ 0.03\\$		$\frac{1}{100}$ $\frac{1}$	ζap	6573 9114 4522 4522 77000 9345 1635 1635
Ι	663322017520	ıfig.*			$\binom{3}{2}$
$Z_{38}^{\rm eff}$,602 ,868 ,868 ,470 ,470 ,318 ,791 ,791 ,318	Kor	,M'(4 ,M'(3 ,M'(3 ,M'(3 ,M'(3 ,M'(3)	$Z_{3s}^{\rm eff}$	5,855 6,646 8,38 9,194 9,96 (,702 (,702
E E		я	KI KI KI KI	я	, M *
Ato	Ar CI S S S Al Ag Mg	Ator	K C B M N	Ator	, Marka Tigu Marka Mar

Orbitalexponenten von Wellenfunktionen der Atome

59

Tabelle 6 (Fortsetzung)

wiedergeben, ergibt sich vergleichsweise ein Wert S = 0.91. Die möglichst gute Wiedergabe der Einelektronenenergien, die in dem Modell erstrebt wird, scheint demnach nur auf Kosten einer guten Anpassung der Gestalt an *SCF*-Funktionen durchführbar.

Es läßt sich somit feststellen: Die über die Minimumsbedingungen (5) errechneten orthogonalisierten *Slater*-Funktionen liefern sehr gute Einelektronen- und Gesamtenergien sowohl für die Atome der 2. als auch der 3. Periode, sind jedoch im Vergleich zu SCF-Funktionen diffus*. Sie enthalten für jede Gruppe (nl) nur einen einzigen Variationsparameter und genügen sowohl dem Virialtheorem (8) als auch den Orthogonalitätsbedingungen. Auf Grund ihrer Ableitung nähern sie den Hartree—Fock-Operator in bestmöglicher Weise im Sinne der Methode des kleinsten Fehlerquadrates für alle diejenigen Einelektronenpotentiale an, für welche das Virialtheorem erfüllt ist. Sie lassen sich leicht für Valenzzustände und Konfigurationen mit nicht sphärisch gemitteltem Potential errechnen. Allerdings entsprechen die Funktionen nicht definierten spektroskopischen Zuständen.

7. Anhang

In Tabelle 6 sind die Orbitalexponenten, Linearkombinationskoeffizienten, effektiven Kernladungen und Ionisierungspotentiale für orthogonalisierte *Slater*-Funktionen mit reellem Winkelanteil von einigen Atomen der 2. und 3. Periode angegeben.

In den p^{4} - und p^{5} -Konfigurationen treten einfach und doppelt besetzte p-Niveaus auf, für die sich unterschiedliche Radialfunktionen ergeben. In Tab. 6 beziehen sich die ungestrichenen Größen auf doppelt besetzte, die gestrichenen Grössen auf einfach besetzte p-Niveaus.

Die in Tab. 6 angegebenen experimentellen Ionisierungsenergien sind der *Moore*schen Arbeit¹⁴ entnommen.

Die Rechnungen wurden an der IBM-360/44 Rechenanlage des Max-Planck-Instituts für Ernährungsphysiologie in Dortmund begonnen und an der PDP-10/40 Rechenanlage am Max-Planck-Institut für Kohlenforschung in Mülheim/Ruhr beendet. Herrn Prof. Dr. B. Hess, Vorstand des Max-Planck-Instituts für Ernährungsphysiologie, danken wir für die großzügige Erlaubnis zur Benutzung der Rechenanlage. Dem

^{*} Nach Einführen eines Skalenfaktors gelingt es, in der erweiterten Hückel-Methode sowohl die Überlappungsmatrix als auch die Diagonalelemente der Energiematrix mit diesen Funktionen zu berechnen und mit experimentellen Größen gut übereinstimmende Ergebnisse zu erhalten: Dissertation W. Solar, Universität Wien, 1970.

Leiter der Rechenabteilung am Max-Planck-Institut für Kohlenforschung, Herrn Dr. *E. Ziegler*, sowie seinen Mitarbeitern, danken wir für die Hilfe bei der Durchführung der Rechnungen.

Literatur

¹ R. Hoffmann, J. Chem. Phys. **39**, 1397 (1963).

² T. Yonezawa, K. Yamaguchi und H. Kato, Bull. Chem. Soc. Japan 40, 536 (1967); H. Kato, H. Konishi und T. Yonezawa, Bull. Chem. Soc. Japan 40, 1017 (1967); T. Yonezawa, H. Nakatsuji und H. Kato, J. Amer. Chem. Soc. 90, 1239 (1968).

³ a) E. Clementi, J. chem. Phys. **38**, 996, 1001 (1963); **41**, 295, 303 (1964); b) E. Clementi, IBM Techn. Rept. RJ-256, August 1963.

⁴ R. E. Watson, Physic. Rev. **118**, 1036 (1960); R. E. Watson und A. J. Freeman, l. c. **123**, 521 (1961); **124**, 1117 (1961).

⁵ J. C. Slater, Physic. Rev. 36, 57 (1930).

⁶ K. W. F. Kohlrausch, Acta Phys. Austr. **3**, 452 (1950); E. Clementi und D. L. Raimondi, J. chem. Phys. **38**, 2686 (1963); G. Burns, J. chem. Phys. **41**, 1521 (1964); K. H. Hansen, Theor. Chim. Acta [Berlin] **6**, 87, 268 (1966); L. C. Cusachs, B. L. Trus, D. G. Carroll und S. P. McGlynn, Internat. J. Quant. Chem., Symp. **1**, 423 (1967); H. J. Silverstone und H. W. Joy, J. chem. Phys. **47**, 1384 (1967); J. D. Sharp-Ritter und P. G. Lykos, J. chem. Phys. **48**, 1717 (1968); L. Pujol und J. C. Simon, Theor. chim. Acta [Berlin] **11**, 59 (1968); J. C. Simon und L. Pujol, J. Chim. Phys. **66**, 1551 (1969).

⁷ P. Schuster, Chem. Phys. Letters 1, 73 (1967); Mh. Chem. 100, 1310 (1969).

⁸ D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, 111 (1928); V. Fock, Z. Physik 61, 126 (1930).

⁹ L. Brillouin, Actualités sci. et ind. vols. **71** (1933); **159** (1934); C. Møller und M. S. Plesset, Physic. Rev. **46**, 618 (1934).

¹⁰ E. T. Koopmans, Physica 1, 104 (1933).

¹¹ H. Eyring, J. Walter und G. E. Kimball, Quantum Chemistry, S. 162. New York: Wiley. 1961.

¹² L. Pauling und E. B. Wilson, Introduction to Quantum Mechanics, S. 112ff. New York-London: McGraw Hill. 1935.

¹³ J. W. Richardson, W. C. Nieuwpoort, R. R. Powell und W. F. Edgell, J. chem. Phys. **36**, 1057 (1962).

¹⁴ Ch. E. Moore, Atomic Energy Levels I., Circular of the Nat. Bureau of Standards 467, Washington 1949.